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1. Introduction

In the following years new discoveries are expected at the LHC concerning physics within

the Standard Model and beyond it. The discovery of the Higgs boson and exclusion or

affirmation of possible extensions or alternatives to the Standard Model will be of special

interest. To be able to measure the proposed signals of processes which open the access to

new physics a very good understanding of the detectors and their responses to produced

particles will be needed. An accurate calibration of particle detectors could be achieved

by using processes with well known cross sections in which particles with well known

properties are produced. A calibration of LHC detectors using W or Z signals is proposed

in several publications [1]. Moreover, the W or Z production is important because it

plays a significant role in background processes connected to Higgs production. Another

experimental motivation is provided by the possibility to measure the luminosity via Z

boson production [2].

At the Tevatron collider W/Z production takes place at a typical x =
√

M2
W /s ≈ 0.04

and hence is dominated by scattering of quarks. Because of the much higher energy, pro-

ton scattering at LHC will allow smaller proton energy fractions and will be dominated by

gluon scattering.

The W mass provides a hard scale and allows a perturbative calculation of the hard ma-

trix element. The resummation of large logarithms of the form [αs ln(µ2/Λ2
QCD)]n (where

µ2 ∼ M2
W , µ2 ≫ Λ2

QCD) can be performed in the framework of the Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) equation [3], leading to the collinear factorization into

conventional parton densities and a hard scattering matrix element. While in the conven-

tional collinear approach the longitudinal momentum fraction is considered to be dominant,
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such that the transverse momenta of the partons can be neglected as well as their virtual-

ities, at small x the transverse momenta entering the hard matrix element should become

relevant.

At the LHC the larger center of mass energy allows W/Z production at even smaller

x such that the production of particles will be dominated by gluon-gluon fusion. More-

over, in this situation we have to deal with two different large scales (s ≫ µ2 ≫ Λ2
QCD)

and logarithms of the form [αs ln(1/x)]n arise which have to be resummed. This is real-

ized by the leading logarithmic (LL) Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [4]

or the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) evolution equation [5] which addition-

ally resums terms of the form [αs ln(µ2/Λ2
QCD)]n and [αs ln(µ2/Λ2

QCD) ln(1/x)]n. Just as for

DGLAP, it is possible to factorize the cross section into a convolution of process-dependent

hard matrix elements with universal parton distributions. But as the virtualities and trans-

verse momenta are no longer ordered (as it is the case in DGLAP evolution), the matrix

elements have to be taken off-shell, and the convolution has to be made also over trans-

verse momenta with the so-called unintegrated parton densities. This factorization scheme

is called kT -factorization [6, 7] or semi-hard approach [8] and will be used in this work.

There is also the notion of transverse momentum dependent (TMD) parton distribu-

tions [9]. But although in these approaches the transverse momentum of the parton is

taken into account as well, this is only the case on the side of the parton density. The

matrix element is calculated with incoming on-shell partons, and transversal momenta of

the incoming partons are neglected. It has been shown [10] that factorization within this

approach is violated beyond NLO. In case of the kT -factorization approach used in this

work this is also expected. Indeed, it is well known that in the BFKL approach beyond

NLO multiple gluon exchange in the t-channel has to be taken into account.

In this paper we calculate and analyze Z and W production associated with two quark

jets provided by gluon-gluon fusion in kT -factorization. We assume quasi-multi-Regge-

kinematics (QMRK) where the cluster of W/Z and the two quarks is well separated in

rapidity from the proton remnants while the kinematics within that cluster is considered

without any further assumption. In particular, we take into account the mass of the quarks.

In this kinematic regime a gauge independent off-shell matrix element can be extracted due

to high energy factorization. A similar calculation has been done in [11], where the authors

calculated photon (instead of Z/W ) production in the same framework. We calculated the

matrix element independently and extended it to massive gauge bosons. In our work

on massive gauge bosons production we especially focus on the predictions for LHC and

compare with a collinear factorization based calculation.

When this paper was in preparation, we learned about another group [12] working

on this process as well using the same theoretical approach, but laying more emphasis on

confronting the theoretical predictions with experimental data and examining the role of

quark contributions.

The paper is organized in the following way: In section 2 we describe notation, kine-

matics of the process and the calculation of the matrix element. In section 3 we present nu-

merical results obtained from a calculation using the Monte Carlo generator Cascade [13],

where the matrix element squared was implemented. In section 4 we summarize the results

and offer conclusions.
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Figure 1: Labeling and flow of momenta of the process pp → q (W/Z) q̄ X .

2. Kinematics of Z/W production and calculation of the hard matrix

element

We label the 4-momenta of incoming hadrons with masses mA and mB by p′A and p′B,

respectively. In the center of mass system they can be expressed in terms of invariant light

like vectors pA and pB

p′A =pA +
m2

A

s
pB, p′B =pB +

m2
B

s
pA. (2.1)

In the case of protons at the LHC we have m2
A = m2

B = m2
p which satisfies the relation

m2
p

s ≪ 1. Therefore, we can neglect the masses in eqs. (2.1) and use pA,B instead of p′A,B.

It is convenient to use Sudakov decomposition for all momenta present in the calcula-

tion (see also figure 11) by decomposing them into components proportional to pA and pB,

and a remainder perpendicular to both of them

ki = αipA + βipB + ki⊥, (2.2)

where i ∈ {1, 2,W (Z)} for outgoing particles, and

q1 =αpA + βq1
pB + q1⊥, q2 =αq2

pA + βpB + q2⊥ (2.3)

for the gluons entering the hard matrix element. It is also convenient to introduce Eu-

clidean two dimensional vectors ~ki and ~qj which satisfy the relations ~k 2
i = −k2

i⊥ ≥ 0 and

~q 2
j = −q2

j⊥ ≥ 0.

In QMRK we have

α ≫βq1
, q2

1 = − ~q 2
1 = t1, (2.4)

β ≫αq2
, q2

2 = − ~q 2
2 = t2, (2.5)

αiβi =
m2

i + ~k 2
i

s
, (2.6)

1These and the following diagrams were drawn in JaxoDraw [14].
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where i ∈ {1, 2,W (Z)}, and mi are the corresponding masses of outgoing particles. The

invariants t1 and t2 describe the momentum transfer between the cluster formed by the

quarks and the W (Z) boson on one hand and the incoming protons on the other hand.

Due to the strong ordering in α and β one can neglect terms proportional to βq1
and αq2

in the calculation.

It is useful to introduce a set of Mandelstam variables describing the system

ŝ =(q1 + q2)
2 = αβs − (~q1 + ~q2)

2, (2.7a)

ŝ1 =(k1 + kW )2, ŝ2 =(k2 + kW )2, (2.7b)

t̂1 =(q1 − k1)
2, t̂2 =(q2 − k2)

2, (2.7c)

û1 =(q1 − k2)
2, û2 =(q2 − k1)

2, (2.7d)

related by

û1 + t̂2 + ŝ = t1 + t2 + m2
2 + ŝ1, û2 + t̂1 + ŝ = t1 + t2 + m2

1 + ŝ2. (2.8)

It is convenient to introduce transverse masses defined by

mi⊥ =

√
m2

i + ~k2
i , mq⊥ =

√
ŝ + (~q1 + ~q2)2, (2.9)

and longitudinal momentum fractions of the produced particles xi = αi

α . Combining these

relations with eqs. (2.6), (2.7) one finds that — in the end – the matrix element of W or Z

production associated with a quark-antiquark pair can be expressed in terms of independent

Mandelstam variables defined in eqs. (2.7), transverse masses and variables x1,2,W (Z).

In the kT -factorization formalism the hadronic and partonic cross section are related

as follows:

dσ(pp → q (W/Z) q̄ X) =

∫
dα

α

∫
d~q2

1

∫
dφ1

2π
A(α, ~q2

1 , µ
2)

×
∫

dβ

β

∫
d~q2

2

∫
dφ2

2π
A(β, ~q2

2, µ
2)dσ̂(g∗g∗ → q (W/Z) q̄), (2.10)

where A is the unintegrated gluon density in a proton and φ1,2 is the angle of ~q1,2 with

respect to some fixed axis in the azimuthal plane. The argument µ2 of unintegrated gluon

densities is the factorization scale. The partonic cross section is denoted by dσ̂.

Since the incoming gluons of the matrix element entering this partonic cross section are

off-shell, the calculation differs from that of a hard matrix element in the collinear approach

significantly. To guarantee gauge invariance, the process with off-shell incoming particles

has to be embedded into the scattering of on-shell particles. The extracted off-shell matrix

element is of course independent of the specific choice of the particles in which the scattering

process is embedded. Therefore, we replace the protons by quarks for the calculation of

the hard matrix element. All diagrams for the discussed process are shown in figure 2.

The first two rows of figure 2 include also non-factorizing (‘non-resonant’) diagrams

which factorize only in the sum. To make this factorization apparent already at this level,

one can sum up the different diagrams of one gluon production in quark-quark scattering
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Figure 2: Full set of diagrams contributing to W/Z production via off-shell gluon-gluon fusion.

Figure 3: Diagrams contributing to the Lipatov vertex.

leading to one effective diagram with an effective vertex (see figure 3). By working in

Feynman gauge one obtains the well known Lipatov vertex [15]:

Γν
στ (q1, q2) =

2pAτpBσ

s

(
2t1 + m2

q⊥
βs

pν
A −

2t2 + m2
q⊥

αs
pν

B − (q1⊥ − q2⊥)ν

)
. (2.11)

It can be shown that this vertex obeys the Ward identity. By this procedure, the first two

rows of figure 2 are each replaced by just one diagram.

Strong ordering of Mandelstam variables s and t1,2 allows us to make a simplification

of the coupling of gluons to incoming quarks. By neglecting the exchanged momentum

in the vertex, we get an eikonal vertex which does not depend on the spin of the particle

coupled to gluon and preserves its spin. In detail, it reads

−iū(λ′
1, pA − q1)γ

µu(λ1, pA) −→ −2ipµ
Aδλ′

1
,λ1

. (2.12)
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With the help of eq. (2.12) it is possible to remove the external quark lines and attach

so-called ‘non-sense’ polarizations to the incoming gluons:

ǫµ
q1

=

√
2 pµ

A√
s

, ǫν
q2

=

√
2 pν

B√
s

. (2.13)

Instead of Feynman gauge, one can choose an appropriate axial gauge [6] n · A = 0

with the gauge vector

nµ = apµ
A + bpµ

B with a, b ∈ C. (2.14)

The contraction of the eikonal coupling (2.12) with the gluon polarization tensor in this

gauge

d(n)
µν (q) = −gµν +

nµqν + qµnν

nq
− n2 qµqν

(nq)2
(2.15)

then reads

pµ
Ad(n)

µν (q1) =
q1⊥ν

α
, pµ

Bd(n)
µν (q2) =

q2⊥ν

β
. (2.16)

In such a physical gauge the ‘non-resonant’ diagrams vanish since the direct connection

of two eikonal couplings gives pµ
Ad

(n)
µν pν

B = 0 (in other words: the Lipatov vertex is to be

replaced by the usual three gluon vertex).

In the case of heavy quark production the polarization sum for the s-channel gluon

reduces to its Feynman gauge analogue −gµν due to the heavy flavor current conservation.

The same simplification takes place in our calculation. Nevertheless, we have to stress that

in general the polarization sum stays in its complex form. Of course, both ways to calculate

the matrix element are equivalent due to gauge invariance.

The sum over the physical polarizations η of the W boson reads

∑

η

ǫµ(η, kW )ǫ∗ν(η, kW ) = −gµν +
kµ

W kν
W

m2
W

. (2.17)

It is equivalent to replace the polarization sum by

∑

η

ǫµ(η, kW )ǫ∗ν(η, kW ) → −gµν , (2.18)

and to add also the contribution of the Goldstone boson emission diagrams, where the

W boson is replaced by a Goldstone boson with mass mW . This is in analogy of using

the Feynman-t’Hooft gauge instead of the unitary gauge. We have calculated the squared

matrix element in both ways as a crosscheck.

Expressions for the single diagrams in figure 2 – where the first diagrams are already

combined using the Lipatov vertex of eq. (2.11) – are listed here (the hat marks contraction

– 6 –
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with Dirac-matrices):

Mab
1µν = −igwg2

sKW/Z ū[tb, ta]
Γ̂µν(q1, q2)

ŝ

−k̂2 − k̂W + m1

ŝ2 − m2
1

ǫ̂(vq − aqγ
5)v,

Mab
2µν = −igwg2

sKW/Z ūǫ̂(vq − aqγ
5)

k̂1 + k̂W + m2

ŝ1 − m2
2

[tb, ta]
Γ̂µν(q1, q2)

ŝ
v,

Mab
3µν = −igwg2

sKW/Z ūtaγµ
k̂1 − q̂1 + m1

t̂1 − m2
1

tbγν
−k̂2 − k̂W + m1

ŝ2 − m2
1

ǫ̂(vq − aqγ
5)v,

Mab
4µν = −igwg2

sKW/Z ūǫ̂(vq − aqγ
5)

k̂1 + k̂W + m2

ŝ1 − m2
2

taγµ
q̂2 − k̂2 + m2

t̂2 − m2
2

tbγνv,

Mab
5µν = −igwg2

sKW/Z ūtaγµ
k̂1 − q̂1 + m1

t̂1 − m2
1

ǫ̂(vq − aqγ
5)

q̂2 − k̂2 + m2

t̂2 − m2
2

tbγνv,

Mab
6µν = −igwg2

sKW/Z ūǫ̂(vq − aqγ
5)

k̂1 + k̂W + m2

ŝ1 − m2
2

tbγν
q̂1 − k̂2 + m2

û1 − m2
2

taγµv,

Mab
7µν = −igwg2

sKW/Z ūtbγν
k̂1 − q̂2 + m1

û2 − m2
1

taγµ
−k̂2 − k̂W + m1

ŝ2 − m2
1

ǫ̂(vq − aqγ
5)v,

Mab
8µν = −igwg2

sKW/Z ūtbγν
k̂1 − q̂2 + m1

û2 − m2
1

ǫ̂(vq − aqγ
5)

q̂1 − k̂2 + m2

û1 − m2
2

taγµv,

(2.19)

with the short hand notations ū ≡ ū(λ, k1), v ≡ v(λ′, k2), ǫ̂ ≡ ǫ̂(η, kW ), and where η, λ

and λ′ label the helicity/ spins of the corresponding particles. Color factors are represented

by Gell-Mann matrices ta, tb. The factors vq, aq and KW/Z encode the W and Z coupling.

For W boson we have vq = aq = 1 and KW = Vud
1

2
√

2
, where Vud is the corresponding

element of Cabibbo-Kobayashi-Maskawa matrix. For Z we have au = 1
2 , vu = 1

2 − 4
3 sin2 θW

and ad = −1
2 , vd = −1

2 + 2
3 sin2 θW and KZ = 1

2 cos θW
, where θW is the Weinberg angle. In

the latter case m1 equals m2, and mW is replaced by mZ .

If we make use of the eq. (2.18) to replace the polarization sum, one has to add diagrams

and corresponding amplitudes with Goldstone bosons with couplings

−igwKW/Z

(m2 − m1

mW/Z
vq −

m1 + m2

mW/Z
aqγ

5
)
. (2.20)

Finally, the square of the amplitude averaged over initial helicities and colors of gluons

and summed over spins/ helicities and colors of final particles can be written as

1

4

1

(N2
c − 1)2

|M|2 =
1

4

1

(N2
c − 1)2

∑

λ,λ′,η,a,b

Trcolor

{∣∣∣∣∣

8∑

i=1

ǫµ
q1

ǫν
q2
Mab

iµν

∣∣∣∣∣

2}
. (2.21)

By evaluating the traces over the products of Gell-Mann color matrices, one encounters

two possible cases of color factors

Tr{tatbtatb} = − 1

4

N2
c − 1

Nc
, Tr{tatbtbta} =

1

4

(N2
c − 1)2

Nc
, (2.22)

where Nc = 3 is the number of colors.
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Finally, the expression for the partonic off-shell cross section appearing in eq. (2.10)

to calculate the hadronic cross section is

dσ̂(g∗g∗ → q (W/Z) q̄ ) =(2π)4δ(4)
(
q1 + q2 − k1 − k2 − kW/Z

)
×

× 1

2αβs

α2β2s2

t1t2

1

4

1

(N2
c −1)2

|M|2
∏

i∈{1,2,W (Z)}

d3ki

(2π)32E(ki)
.

(2.23)

The origin of the specific form of the flux factor and prefactor α2β2s2

t1t2
is formulated

in [6, 7]. We summarize the most relevant aspects here. An important feature of the whole

calculation is that it is possible to recover the result obtained in collinear factorization by

neglecting the transverse momenta of the gluons when they enter the hard matrix element

and instead integrate over them only in the gluon densities. Due to factorization it is pos-

sible to keep this connection not only for the full cross section, but also for gluon densities

and hard matrix element separately as well, provided that the explicit manifestations of

the factorization formulae are phrased.

The key point is the observation that

〈
2
q1⊥µq1⊥ν

q2
1⊥

〉
φ1

= −g⊥µν =
〈
2
q2⊥µq2⊥ν

q2
2⊥

〉
φ2

. (2.24)

As shown in eqs. (2.14)–(2.16), in an appropriate gauge the polarization sum
2pAµpBν

s can be

replaced by
2q1⊥µq2⊥ν

αβs . Since in this gauge one has to deal with exactly the same diagrams

as in the on-shell calculation, by dressing the off-shell matrix element squared with the

prefactor α2β2s2

t1t2
and performing the averaging over azimuthal angles of the ‘incoming’

gluons, followed by taking the limit t1, t2 → 0, one gets the collinear limit of the matrix

element squared. The flux factor for off-shell gluons is defined as for on-shell gluons with
1

2αβs . As the matrix element is gauge invariant, this connection remains valid when one

performs the current calculation in a different gauge.

Due to the off-shellness of the incoming gluons and the three particle final state the

final result of the matrix element squared is rather lengthy. For that reason, we calculated

it independently and in different ways. One calculation followed directly the derivation

above using Feynman gauge for the gluons, and has been performed using Mathematica.

A second calculation written in Form [16, 17] used an axial gauge as described above such

that the Lipatov vertices in (2.19) are to be replaced by standard three-gluon-vertices.

Moreover this second method used the method of orthogonal amplitudes, described in [18],

which affects the fermionic part of the matrix element and with which one is able to treat

the matrix element squared in a more compact way.2

For this second method a few technical details are elaborated in the remainder of this

section. The method of orthogonal amplitudes is based on expressing a generic amplitude

M̃ (with one quark line) in terms of a set of four independent operators Ôi, i ∈ {1, . . . , 4},
which satisfy orthogonality relations Tr{Ôi(k̂2 − m2)Ôj(k̂1 + m1)} = ‖Ôi‖2δij for any

2We also have cross-checked numerically our results for the case of a produced photon instead of a W/Z

boson with those of the authors of [11] whose cooperation we gratefully acknowledge.
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possible i and j, where ‖Ôi‖ is the “norm” of the operator Ôi. The projection of M̃ by an

operator Ôi is performed in the following way

M̃i =
1

‖Ôi‖
∑

λ,λ′

M̃ v̄(λ′, k2)Ôiu(λ, k1). (2.25)

The matrix element squared then has the following form
∑

λ,λ′

|M̃|2 =
∑

i

|M̃i|2. (2.26)

In our case the matrix element consists of up to five Dirac-matrices (neglecting γ5), after

squaring one has to evaluate traces of up to twelve of them. In contrast the method of

orthogonal amplitudes leads only to traces of up to eight Dirac-matrices.

If one wants to consider also the Z or W± coupling in the Feynman diagram, one

encounters a technical problem connected with the appearance of the Dirac-matrix γ5 in

the expression for the amplitude, leading to terms which include Levi-Civita tensors which

later cancel. To avoid this complication, one can split the expression for the amplitude into

two parts, one which does not include γ5 and the other one which does (to separate the

vector and axial part of the Z or W boson coupling). For the part with γ5 one uses a base of

operators Ôiγ
5. It is easy to check that they satisfy the same orthogonality relation like the

operators Ôi. One also easily see that projections of amplitudes in which γ5 occurs do not

contain terms with Levi-Civita tensors. In doing so, we extend the method of orthogonal

amplitudes in a natural way.

Another complication comes from the presence of color factors in the expressions which

are not numbers but matrices. To treat the projections as numbers, it is necessary to sep-

arate the Feynman diagrams into three groups according to different color factors, namely

Cab
1 = tatb − tbta,

Cab
2 = tatb,

Cab
3 = tbta,

(2.27)

which form a vector Cab = (Cab
1 , Cab

2 , Cab
3 ) (components of Cab are color factors of Mab

(1,2)µν ,

Mab
(3−5)µν and Mab

(6−8)µν correspondingly). One can then build a corresponding vector con-

taining the sums of Feynman diagrams without the color factors F = (F1,F2,F3) such that

Mab = (Cab)TF . (2.28)

The Lorentz indices have been dropped for simplicity. Using the matrix

Cij = Tr{Cab
i Cba

j }, (2.29)

the expression for the square of the matrix element takes the form

|M|2 = F†CF , (2.30)

where combinations of Fi and F∗
j are calculated using the projection method introduced

in eqs. (2.25), (2.26). For the final simplification we have diagonalized the matrix C.

After diagonalization of the matrix C only two diagonal elements remain nonzero. This

is expected because the quarks in the final state, in this process, can occur only in two

possible color states.

– 9 –
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3. Numerical studies

The last missing pieces needed to calculate the hadronic cross section using eq. (2.10), are

the unintegrated gluon densities. As mentioned in the introduction, there are two equations

suited to describe the evolution of an unintegrated gluon density, namely BFKL [4] and

CCFM [5], respectively. Both have been shown to agree on the leading logarithms in

small x [19], but the CCFM evolution is valid in the domain of larger x as well and,

moreover, matches in this region with DGLAP. Therefore, we base our numerical studies

on an unintegrated gluon density obeying the CCFM equation, which has been implemented

in the Monte Carlo generator Cascade [13]. We also investigate how the results change

when using uPDFs generated by a different procedure known as KMR [20].

For this purpose, we implemented the matrix element squared as described above into

Cascade. This implementation will be available in the next version of Cascade.

We have used the unintegrated parton distribution function (uPDF) CCFM 2003 set-3

for the numerical calculation.

To investigate the calculated matrix element as accurately as possible, we neglect in

this first study the effect of hadronization of the final state. We study in detail rapidity

and transverse momentum distributions of the produced gauge boson, quark and antiquark

which (if one assumes that quarks approximately determine jets) are the most important

observables in the experiment.

Furthermore, we compare the kT -factorization approach to the collinear one. For this

purpose, we compare the distributions obtained by our transverse momenta dependent ma-

trix element with distributions obtained from the Monte Carlo generator Mcfm [21] which

provides a calculation of the same process in the collinear limit. In that case the transverse

momenta coming from the evolution are neglected. We also investigate in section 3.3 how

the variation of unintegrated parton densities affect the azimuthal angle and transverse

momenta distributions.

As an artefact of the perturbative calculation, the results depend on the renormaliza-

tion scale µR and the factorization scale µf . In the CCFM formalism the hardest scale is

set by the emission angle of the hardest subcollision. It can be expressed in terms of the

energy of the subcollision µf =
√

ŝ + (~q1 + ~q2)2. For the comparison with collinear fac-

torization calculations we have used as renormalization scale µR = mZ in kT -factorization

calculation and in collinear calculation as well. We have also investigated other possible

choices (see subsection 3.3).

3.1 Comparison with LO collinear calculation

Our calculation of the hard matrix elements includes W± and Z production in association

with all possible quark-antiquark channels in gluon gluon fusion. Since the basic struc-

ture of all these matrix elements is very similar, we present results only for the typical

case of Zbb̄ production at LHC energies of
√

s = 14TeV. The mass of the b-quark used

is mb = 4.62GeV. For the collinear factorization calculations we use the parton densities

CTEQ6L1 [22].
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Figure 4: Transverse momentum distributions of the produced Z gauge bosons. Calculation with

massive b-quarks. Both calculations are in LO of perturbation series.
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Figure 5: Rapidity distribution of the produced Z gauge bosons. Calculation with massive b-

quarks. Both calculations are in LO of perturbation series.

The total cross sections are comparable in magnitude, though they differ considerably:

0.406 nb in kT -factorization and 0.748 nb in collinear factorization. The difference of total
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final state Zcc̄ Zbb̄ Ztt̄ W+sc̄, W−cs̄

σtot [nb] 0.430 0.406 0.525 · 10−3 1.92

Table 1: Total cross sections for different final states, calculated in kT -factorization using Cas-

cade.

cross sections stems from the different behavior at low transversal momenta of final state

particles (discussed later in this section) where contributions from transversal momenta of

the initial state gluons play a significant role. It can be seen that by applying a cut on

the transversal momentum of the Z boson pZ⊥ > 50GeV the difference of the total cross

sections becomes smaller. With this additional cut one obtains cross sections of 0.118 nb

in kT -factorization and 0.141 nb in LO collinear calculation.

The total cross sections for other final states of interest are given in table 1.

The transverse momentum and rapidity distributions of the vector boson are shown

in figure 4 and 5, respectively. The comparison of the kT -factorization approach to the

collinear shows that they agree in transversal momentum distributions of Z at high values

of this quantity. This is no surprise, since at high pZ⊥ the contribution from initial state

gluon transverse momenta is expected to become small.

The rapidity distributions of the Z show a similar behavior, except for the overall

normalization (figure 5).

To elaborate the difference between kT - and collinear factorization, we investigate more

exclusive observables, like the cross section differential in rapidity distance between quark

and antiquark (figure 6). Both calculations show a two peak structure with a minimum at

zero rapidity, but the kT -factorization result has a considerably shallower minimum. The

minimum in the case of the collinear calculation gets shallower — bringing together both

calculations — when one again applies a cut on pZ⊥ > 50GeV as one can see in figure 7.

In the distribution of the azimuthal angular distance of Z and max(pb,⊥, pb̄,⊥) (figure 8)

we observe that the region from 0 to π/2 is forbidden within the collinear calculation due to

momentum conservation, which is not the case for kT -factorization. This is caused by the

contribution from initial state gluon transversal momentum which allows the transversal

momenta of Z, b and b̄ to be unbalanced. A larger spread of possible configurations causes

that the distribution in the kT -factorization calculation flattens.

3.2 Comparison with NLO collinear calculation

In collinear factorization the physical effect of the intrinsic transverse momenta of the initial

gluons can not be described until higher order corrections are taken into account. Then

additional real emissions lead to off-shell gluons and their transverse momenta. Therefore,

the significant differences between a calculation in the collinear factorization framework and

kT -factorization framework shown in the previous section encourage us to compare our LO

calculation in kT -factorization with a NLO collinear calculation, since CCFM evolution

includes the high-energy part of the NLO collinear corrections. Since there are two off-
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Figure 6: Distributions of the rapidity distance between quark and antiquark. Calculation with

massive b-quarks. Both calculations are in LO of perturbation series.
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Figure 7: Distributions of the rapidity distance between quark and antiquark. Calculation with

massive b-quarks. A cut on pZ⊥ > 50 GeV has been applied.

shell initial gluons in a kT -factorized pp-collision, one could even call for a higher order
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Calculation with massive b-quarks. Both calculations are in LO of perturbation series.

collinear calculation to compare.3

To compare with a collinear NLO calculation, we use again the Monte Carlo generator

Mcfm. This Monte Carlo generator provides the process gg → Zbb̄ at NLO only in the

massless quark limit. To avoid divergences, additional cuts are applied on transversal

momenta of quarks, on the invariant mass of the bb̄ pair, and on transversal momenta

of a gluon which is produced in diagrams of real NLO corrections. Transversal momenta

of produced quark, antiquark and gluon have to satisfy the condition p⊥ > 4.62GeV

(corresponding to the mass of the b-quark). These cuts on quark (antiquark) momenta are

automatically applied in Mcfm when one is performing a calculation involving massless

quarks (antiquarks). We choose the parton density functions set CTEQ6M [22]. The same

cuts on transversal momenta of quark and antiquark are then applied in Cascade as well.

For the total cross sections, we obtain in the NLO collinear factorization calculation

1.04 nb, and in the kT -factorization calculation 0.429 nb. The difference of the total cross

sections in kT -factorization calculation and the NLO calculation in collinear factorization

is of the same origin as the difference between the total cross sections in section 3.1 where

comparison of kT -factorization calculation and NLO calculation in collinear factorization

3Although we argue that already the LO kT -factorization calculation includes in some sense higher order

corrections, one might ask for an extension to NLO. So far kT -factorization based on CCFM evolution

has been formulated only at LO. On the other hand, since the BFKL equation has been calculated at

NLO accuracy [23], in the small x regime kT -factorization can be formulated at NLO accuracy as well [24].

Nevertheless, an implementation into a Monte Carlo generator is still outstanding. Moreover, the calculation

of an off-shell 2→ 3 process at one loop order is far beyond the scope of this work.

– 14 –



J
H
E
P
0
9
(
2
0
0
8
)
0
3
5

 [GeV]
Z

p
0 50 100 150 200 250 300 350 400

]
-1

 [
n

b
 G

eV
Z

/d
p

σ
d

-610

-510

-410

-310

-210 bZb
collinear LO
collinear NLO
kt

Figure 9: Comparison of cross sections differential in transverse momentum of the produced Z

gauge boson. Calculation with massless b-quarks. The applied cuts are described in the text.

is discussed. This is again illustrated by a cut on pZ⊥ > 50GeV diminishing the difference

between the cross sections (0.125 nb for the kT -factorization calculation and 0.165 nb for

the NLO calculation in collinear factorization).

The result for the cross sections differential in the transversal momentum of Z can be

seen in figure 9. The cross section changes especially at small pZ⊥ (see figure 10) from LO

to NLO calculation, and the difference between collinear calculation and kT -factorization

calculation becomes more pronounced. We observe that the maximum of the distribution in

the NLO calculation (Mcfm) stays approximately at same value of transversal momenta

and the shape of the peak is very different from the one we obtain in kT -factorization.

Nevertheless, the pZ⊥ distributions match at very high pZ⊥ (O(102GeV)).

The rapidity distribution of the Z (figure 11) shows no major difference in shape in

kT -factorization approach, LO and NLO collinear factorization approach.

We consider the cross section differential in the total transversal momentum of the Zbb̄

system pZbb̄⊥ in figure 12. In the NLO collinear calculation a non-zero pZbb̄⊥ is generated by

the emission of an additional gluon, while at LO it is always balanced to zero. At low pZbb̄⊥
we see the consequence of the cut on the transverse momenta of the outgoing particles in

Mcfm (a small gap between 0GeV and 4.62GeV in pZbb̄⊥ histogram). Since there are no

parton showers or soft gluon re-summation [25] included in the Mcfm NLO calculation,

one observes a steep rise of the cross section towards zero transverse momentum because

the matrix element diverges when approaching pZbb̄⊥→0GeV. On the other hand, uPDFs

include corrections similar to parton shower effects, treated consistently, which causes the

turnover in the cross section of the kT -factorization calculation. Here, the entire transversal

momentum of the Zbb̄ system stems from the transversal momenta of initial state gluons.
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Figure 10: Comparison of cross sections differential in transverse momentum of the produced Z

gauge boson (linear scale). Calculation with massless b-quarks. The applied cuts are described in

the text.
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Figure 11: Comparison of cross sections differential in rapidity of the produced Z gauge boson

(logarithmic scale). Calculation with massless b-quarks. The applied cuts are described in the text.
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Figure 12: Comparison of cross sections differential in the p⊥ of the system Zbb̄. Calculation with

massless b-quarks. The applied cuts are described in the text.

We expect that resummation effects at low values of pZbb̄⊥ would tame the growth of the

cross section in collinear factorization and would decrease the difference to kT -factorization.

Interestingly, there is a difference not only at low values of pZbb̄⊥, but also at high values

of pZbb̄⊥. The differential cross sections at high pZbb̄⊥ have a similar slope, but differ by a

factor of ∼ 3. This is contrary to the behavior of distributions of pZ⊥ in figures 9 and 4

where at large values of pZ⊥ the differential cross sections overlap. For this difference at

large pZbb̄⊥ further calculations have to reveal the exact effect of higher order corrections

in collinear factorization, keeping in mind that the NLO for this obersvable de facto is the

first non trivial order.

The cross section differential in the difference of azimuthal angles of Z and b or b̄ quark

with higher transversal momentum — ∆φZhb — is shown in figure 13. Going from LO to

NLO, the collinear calculation reveals a broader distribution like in the kT -factorization

case. Nevertheless, the kT -factorization result shows a more homogeneous spread of the

azimuthal angle distance. This difference origins partly in the difference of the transversal

momentum distributions at low values (see figure 10). A cut on low values (pZ⊥ > 50GeV)

of the transversal momentum of the Z boson results in steeper ∆φZhb distributions as shown

in figure 14. Still, the kT -factorization result is flatter than the NLO collinear factorization

calculation giving an indication that there is a contribution from the total transversal

momentum of the Zbb̄ system generated by both uPDFs.

3.3 Variation of the Cascade results on uPDF and renormalization scale

To estimate the uncertainty coming from the different choices of uPDF sets, we calculate

the cross sections differential in either the transverse momentum of the Z boson or ∆φZhb
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Figure 13: Comparison of cross sections differential in distance in azimuthal angle of Z and higher

p⊥ b/b̄. Calculation with massless b-quarks. The applied cuts are described in the text.
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Figure 14: Comparison of cross sections differential in distance in azimuthal angle of Z and higher

p⊥ b/b̄. Calculation with massless b-quarks. An additional cut on pZ⊥ > 50 GeV has been applied.

(distance in polar angle between Z and max(pb⊥, pb̄⊥)) using different sets of uPDFs,
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uPDF Total cross section [nb]

CCFM J2003 set 1 0.369

CCFM J2003 set 2 0.147

CCFM J2003 set 3 0.406

CCFM set B0 0.277

CCFM set A0 0.378

KMR 0.190

Table 2: Total cross sections of the process pp → Zbb̄+X for different sets of unintegrated parton

distribution functions.

µR Total cross section [nb]

mZ 0.406

2mZ 0.392
1
2mZ 0.607√

m2
Z + p2

Z⊥ 0.467

2
√

m2
Z + p2

Z⊥ 0.381

1
2

√
m2

Z + p2
Z⊥ 0.585

Table 3: Total cross sections for different renormalization scale µ.

namely CCFM J2003 set 1, 2, 3 [26] and CCFM set A0 [27], which are all obtained from

fits to HERA F2 data [28]. In addition we use the unintegrated parton density by [20],

referred to as KMR. The resulting plots are shown in figures 15 and 16. We do not show

the distributions for set 1, because they are very close to distribution for the set 3, to keep

the plot clear.

The total cross sections obtained for different uPDFs can be seen in table 2. The

total cross section varies for these different uPDFs about 45%, while the shape of the

distributions is hardly effected except of the KMR. KMR set uses completely different

evolution equations and a deviation is not surprising.

As a last point to discuss, we turn to the scale dependence. As already mentioned in

the beginning of section 3 the factorization scale is fixed by the emission angle of the hard

subprocess. However, there is still freedom in choice of the renormalization scale which

should be of order of the typical scale of the hard subprocess.

We consider two possible choices: the constant renormalization scale µ1 = mZ and

the scale µ2 =
√

m2
Z + p2

Z⊥, which are varied by factor of 2, so µ has values 2µ1,
1
2µ1 and

2µ2,
1
2µ2. The results for the pZ⊥ and the ∆φZhb distribution can be seen in figures 17

and 18, respectively. The values of the cross section for individual choices of the scale are

summarized in table 3. One can see that a running αS does not affect the shape of the

distributions, but only the total cross section.
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using massive quarks. Cases with different uPDFs compared.
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using massive quarks. Cases with different renormalization scales µR compared.
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4. Summary and conclusions

In this paper we have calculated the matrix element for the process g∗g∗ → W/Zqiq̄j,

taking into account the virtuality and transversal momenta of the initial gluons in the kT -

factorization formalism. We have implemented the matrix element squared in the Monte

Carlo generator Cascade and have calculated the total and differential cross sections of

this process in proton proton collisions for the LHC at energy of
√

s = 14TeV. We have

compared our results with results obtained in collinear factorization (using Mcfm). The

total cross sections differ by a factor of ∼ 2. There are differences in distributions which

are sensitive to compensation of transversal momenta of particles in the final state coming

from rather fundamental differences between the two approaches.

We found the most significant differences in the cross section differential in the az-

imuthal angle between the Z boson and higher pT quark or antiquark — ∆φZhb. While

for a LO calculation in collinear factorization a region of values of ∆φZhb is kinematically

forbidden, in kT -factorization the whole range of ∆φZhb is allowed. This is because of

neglecting the contribution of transversal momenta of initial state gluons in calculation of

matrix element in collinear factorization. The NLO collinear calculation (where transversal

momentum is generated by real corrections) shows already the same qualitative behavior

as the kT -factorization calculation. However, there remains a difference in the shape of

the distribution of ∆φZhb compared to the kT -factorization calculation We also compared

cross sections differential in the transversal momentum of the Zbb̄ system — pZbb̄⊥. In

collinear factorization and lowest order perturbation theory (α2
S), the observable pZbb̄⊥ is

exactly zero. For a non-zero contribution in collinear factorization higher order corrections

are needed. The kT -factorization gives non-zero contribution already at α2
S order. We have

compared cross sections differential in pZbb̄⊥ calculated in NLO in collinear calculation and

LO in kT -factorization. The distributions have different shape at low values of pZbb̄⊥. At

high pZbb̄⊥ the slopes are similar but differ in absolut size.

We have calculated the cross sections differential in the transversal momentum of the

produced boson. The maximum of the distribution in the kT -factorization calculation is

at higher transversal momenta compared to the collinear one. This shows the sensitivity

of this distribution on parton evolution model and treatment of kinematics.

We conclude that some of the effects of NLO and even higher order collinear calculation

are already included in the LO kT -factorization calculation.
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